cQOM…a success story

Cavity Quantum Optomechanics is a project that received financial support from the European Union for the period 1.06.2012 – 31.05.2016.

Our project is part of the European Marie Curie actions ITN (Initial Training Network) and aimed at offering early-stage researchers the opportunity to improve their research skills, join established research teams and enhance their career prospects. The network is composed of 10 partners who supported 23 PhD students together with 12 Post Doctoral researchers within 4 years.

Involved in this ITN project: University of Vienna, Gottfried Wilhelm Leibniz University Hannover, Universität Hamburg, University Pierre et Marie Curie Paris, Centre National de la Recherche Scientifique, University Gent, Friedrich-Alexander-University Erlangen Nürnberg, University Degli Studi di Camerino, IBM Research GmbH, Attocube Systems AG,  and EPFL (Coordinator).


Principal Investigators cQOM ITN @ EPFL Campus for kick-off in 2012

Cavity optomechanics is a field in physics that lies at the junction of two areas that drove the technological advances of the last decades: quantum mechanics and nano-science. Cavity optomechanics couples nano-devices – tiny mechanical oscillators – to laser light and other electromagnetic fields. Such coupling allows exquisite control of both the mechanics and the light, such as decreasing the amplitude of thermally driven mechanical vibrations, performing extremely sensitive measurements of position, low noise amplification of microwave signals and generating ‘quantum states’ of light or mechanical oscillations.

The set of skills important for researchers in this field is very diverse, both in theory and experiment, including nanofabrication, cryogenics, quantum optics and structural modeling and simulation of materials. The purpose of this ITN was to provide excellent tools and training for young researchers aspiring to enter the field, as well as to maintain the leading role of Europe in this area. Various workshops were organized by the partners, covering relevant topics of fundamental physics (e.g. “Fundamental Noise Sources” organized by the Leibniz University in Hannover and  “Theory of Cavity Optomechanics” by the University of Erlangen), state-of-the-art experimental techniques (“Experimental toolbox for cavity optomechanics” organized by the UPMC in Paris and “Levitation in (quantum) physics: a new tool for addressing foundational questions” by the University of Vienna), on micro- and nanofabrication (“From Photonics Research to the CMOS-fab” jointly organized by the University of Gent and CNRS in Paris, in collaboration with leading partners from industry) as well as on simulation tools (“Finite Element Modeling” organized by EPFL in Switzerland).

cqom ITN workshop_Vienna May 2015

Prof. Aspelmeyer with ITN Fellows at UNIVIE Workshop; Vienna, Austria (May 2015)

Aside from these workshops aimed at preparing the participants for top-quality academic research, the network also provided a platform to interact with high-profile industry partners. On one hand, these partners organized workshops to expose the participants to research in industry and to entrepreneurship (“Taking an idea to a product”, organized by Attocube systems AG in Munich, and by IBM Research in Zurich). These workshops were very popular and insightful among the early stage researchers. Moreover, these industry partners visited all other conferences and workshops where the participants had ample opportunity to exchange ideas and benefit from the knowledge and experience of these partners.

IBM group photo Nov 2015

Dr. Seidler & Dr. Dürig (IBM), Prof. Kippenberg (EPFL) and ITN Fellows at IBM Research Workshop; Zurich, Switzerland (Nov. 2015)

All of the partners in this ITN were pursuing active research in various aspects of cavity optomechanics – a fact that has considerably leveraged the collaborative effort, resulting in efficient knowledge transfer and exceptional scientific productivity. This is reflected by the prolific scientific output produced by the partners (often in collaboration), summarized in the following main achievements:

  1. Demonstration of ground state cooling of a macroscopic object. Partners at UNIVIE have demonstrated cooling of nanomechanical oscillators to below one quantum of energy [1]. Moreover, work at EPFL has demonstrated for the first time the ability to use an external feedback loop to cool a MHz oscillator within a few quanta of the ground state [2]. Partner UMPC developed cryogenic techniques for pre-cooling free-space Fabry-Perot cavities and have also greatly improved the mechanical quality factor and experimental optical setup [3]. This is expected to allow access to the quantum regime of such oscillators.
  2. Measurements beyond the standard quantum limit. Partner EPFL, using active feedback cooling, has successfully demonstrated measurement of a mechanical oscillator at a rate approaching its thermal decoherence rate, with sensitivity of 44 dB below the standard quantum limit [1]. The LUH/UHAM partner has developed ultra-low noise cryogenic system for kilogram-scale oscillators (such as suspended mirrors). Both LUH/UHAM and UNIVIE developed experimental platforms based on membrane resonators for ultra-sensitive displacement sensing. UCAM has demonstrated frequency-noise cancellation intended for displacement measurement using ponderomotive squeezing of light [4, 5].
  3. Observation of Quantum Measurement Backaction. Partner EPFL has observed quantum measurement backaction at cryogenic temperatures and has initiated the effort for room-temperature experiments [6].
  4. Development of Nano-Optomechanical systems. All partners performed research on a diverse set of optomechanical oscillators, including theoretical work, simulations and nanofabrication. In particular, UGENT has studied and developed optomechanical systems based on Brillouin scattering in the context of silicon photonics [7]. CNRS has developed photonic crystal membranes integrated with an electrostatic actuator [8]. IBM has developed an optomechanical crystal cavity with ultra-small mode volume [9].
  5. Development of optomechanical transducers and milli-Kelvin temperatures. Partners UPMC, EPFL, UCAM and UNIVIE have further developed techniques for optical readout and quantum measurement of optomechanical systems in cryogenic setups [10].

These achievements span a wide array of systems and methods, with the focal point being the observation of quantum behavior of macroscopic objects. Utilizing the quantum regime in this new context is expected to greatly impact future technologies, such as novel sensors and quantum information technology.

Diavolezza 2016 hike

Prof. Vitali with ITN Fellows hiking in the Engadines (Switzerland), Final Diavolezza Workshop (February 2016)

Sharing the knowledge and enthusiasm for the ITN fellows, especially the early stage researchers, was a specific goal for the network. The fellows as ambassadors of cQOM have been involved in numerous outreach activities to raise public awareness of their research work in cavity optomechanics, including attendance at conferences, demonstration of their experiments to younger students at local community events and television broadcasts. Noteworthy events included the development of the Wikipedia article, a collaborative effort carried out among the ESRs which has a significant impact on disseminating the central topic of the cQOM ITN, with over 30 unique visitors a day on average. The article is also available from the cQOM ITN website (https://en.wikipedia.org/wiki/Cavity_optomechanics).  Nuits de la Science, an annual event organized across Europe to promote science to young students, witnessed cQOM ESRs participate within their local communities and contributed booths showcasing custom made photonics-related experiments. The booths were visited by hundreds of people from the general public and the ESRs were engaged in discussions with attendees. Fellows were also active in their local Scientific Open Days, annual events where students and the general public visit the research labs to get first-hand experience on the scientific activities.  ESRs presented posters at their local universities featuring their research work, and assisted with lab tours for high school students and university freshmen.



EPFL ESRs Daniel Toth and Ryan Schilling with EPFL visiting fellow Aditi demonstrating light diffusion in a smoke of dry ice; Nuit de la Science, Geneva, Switzerland (July 2014)

The ITN cQOM program has spurred collaboration between academic institutions within Europe and has resulted in publications in prestigious journals such as Nature and PRL, which greatly benefit the development of the field. Collaborations with industrial partners, such as that between EPFL and IBM, have also been nurtured by the program and will continue to benefit the partners going forward. Finally, ITN trainees have made a concerted effort to reach out to the general public and share excitement about the burgeoning field of cavity optomechanics. The combination of these efforts has resulted in broadly successful program that benefited the students with a wide range of skills that goes far beyond a typical PhD program.



cQOM fellows hiking trip in Lavaux – UNESCO World Heritage Site during EPFL Workshop; Lausanne, Switzerland (July 2014)


[1] R. Riedinger et al., Nature 530, 313-316 (2016)
[2] D. J. Wilson et al., Nature 524, 325 (2015)
[3] Kuhn et al., Appl. Phys. Lett. 104, 044102 (2014)
[4] A. Pontin et al., Phys. Rev. A 89, 033810 (2014)
[5] S. Barzanjeh et al., Phys. Rev. Lett. 114, 080503 (2015)
[6] V. Sudhir et al., arXiv, 1608.00699 (2016)
[7] R. Van Laer et al., New J. Phys. 17, 115005 (2015)
[8] A. Chowdhury et al., Phys. Lett. 108, 163102 (2016)
[9] K. Schneider et al., Optics Express 24(13), 13850-13865 (2016)
[10] R. Schilling et al., Phys. Rev. Applied 5, 054019 (2016)